Python Matplotlib Tutorial

Matplotlib Histogram – Python Matplotlib Tutorial

Python Matplotlib Histogram

Matplotlib histogram is a representation of numeric data in the form of a rectangle bar. Each bar shows some data,  which belong to different categories. To plot histogram using python matplotlib library need plt.hist() method.

Syntax: plt.hist(
x,
bins=None,
range=None,
density=None,
weights=None,
cumulative=False,
bottom=None,
histtype=’bar’,
align=’mid’,
orientation=’vertical’,
rwidth=None,
log=False,
color=None,
label=None,
stacked=False,
normed=None,
*,
data=None,
**kwargs,
)

The plt.hist() method has lots of parameter, So we are going to cover some of these. Which is most important but you have to try each and every one to best practice.

Importing Packages

import matplotlib.pyplot as plt
import numpy as np
import random

Generate Data

ml_students_age = np.random.randint(18,45, (100))
py_students_age = np.random.randint(15,40, (100))

Printing Generated Data

print(ml_students_age)
print(py_students_age)
[22 20 22 42 40 21 35 23 22 24 24 21 44 25 24 40 41 44 44 44 19 23 33 27
 29 21 28 18 34 31 32 29 32 18 39 23 26 24 33 21 20 26 38 25 38 31 30 20
 39 32 41 20 24 27 26 22 33 31 22 38 37 33 34 28 28 34 34 34 33 40 34 23
 33 39 39 25 42 27 23 28 33 31 44 39 28 26 25 29 23 39 39 38 41 34 26 38
 35 42 31 29]
[21 29 26 22 21 20 29 29 26 38 28 32 35 20 21 16 39 26 39 31 27 23 29 37
 32 30 21 36 18 32 17 20 18 28 17 30 29 26 35 31 19 19 19 39 21 26 27 17
 23 22 37 21 35 37 16 33 36 39 31 33 37 26 26 17 17 17 23 27 28 32 38 20
 19 33 24 36 34 27 25 21 33 15 39 15 37 27 32 35 21 37 16 38 36 18 39 21
 29 27 18 30]

Plotting Histogram Using Matplotlib

Plotting histogram of machine learning students age.

plt.hist(ml_students_age)

plt.title("ML Students age histograms")
plt.xlabel("Students age cotegory")
plt.ylabel("No. Students age")
plt.show()

Output >>>

Matplotlib Histogram of ML students age
Fig 1.1 – Matplotlib Histogram of ML students age

Plotting Histogram Using Matplotlib with parameters

bins = [15,20,25,30,35,40,45] # category of ML students age on x axis
plt.figure(figsize = (16,9)) # size of histogram in 16:9 format


plt.hist(ml_students_age, bins, rwidth=0.8, histtype = "bar",
         orientation='vertical', color = "m", label = "ML Student")

plt.title("ML Students age histograms")
plt.xlabel("Students age cotegory")
plt.ylabel("No. Students age")
plt.legend()
plt.show()

Output >>>

Matplotlib Histogram of ML students age with parameters
Fig 1.2 – Matplotlib Histogram of ML students age with parameters

Plotting two Histogram Using Matplotlib with parameters

from matplotlib import style # for style 
style.use("ggplot") # return grid
plt.figure(figsize = (16,9)) 

plt.hist([ml_students_age, py_students_age], bins, rwidth=0.8, histtype = "bar",
         orientation='vertical', color = ["m", "y"], label = ["ML Student", "Py Student"])

#plt.hist(py_students_age, bins, rwidth=0.8, histtype = "bar",
#         orientation='vertical', color = "y", label = "Py Student")

plt.title("ML & Py Students age histograms")
plt.xlabel("Students age cotegory")
plt.ylabel("No. Students age")
plt.legend()
plt.show()

Output >>>

Matplotlib Histogram of ML & Py students age with parameters
Fig 1.3 – Matplotlib Histogram of ML & Py students age with parameters

Conclusion

In matplotlib histogram blog, we learn how to plot one and multiple histograms with a real-time example using plt.hist() method. Along with that used different method with different parameter. We suggest you make your hand dirty with each and every parameter of the above methods. This is the best coding practice. After completion of the matplotlib tutorial jump on Seaborn.

Download Jupyter file matplotlib line plot source code

Visite to the official site of matplotlib.org

Leave a Reply