# How to do division/divide of Tensors in TensorFlow?

In TensorFlow 2.0 Python Tutorial, We will Learn about the TensorFlow Math Module tf.divide() function. We will learn how to do the division of tensors in TensorFlow using tf.devide() function.

tf.divide() : Do Element wise division,
It can be divide scaler, Numpy array but not with list, tuple.
tf variable/constant/placeholder/SparceMatrix with each other and with scaler and with list/tuple

Note: / or // operator can be use to divide 2 tensors

Syntax: tf.divide(x, y, name=None)

## Division of 2 Variables with TensorFlow

```import tensorflow as tf
import numpy as np
```

### Scaler division

```a = 10
b = 20
print(" a/b =", a/b)
print(" a/b =", a//b)

tf.divide(a,b) #0.5

tf.divide(b, a) #2.0
```

### Divide 2 Numpy Array

```npa1 = np.array([1,2,3,4,5])
npa2 = np.array([1,2,3,4,5])

tf.divide(npa1, npa2)
```

### Divide Numpy array with Scaler

```npa1 = np.array([1,2,3,4,5])
a = 10

tf.divide(npa1, a)
```

### Divide Numpy array with single element np array

```npa1 = np.array([1,2,3,4,5])
npa2 = np.array([])

tf.divide(npa1, npa2)
```

### Divide 2 TF Constant Tensor

```tf_ct1 = tf.constant([1,2,3,4])
tf_ct2 = tf.constant([1,2,3,4])

tf.divide(tf_ct1, tf_ct2)
```
```# Division with operator /
tf_ct1 = tf.constant([1,2,3,4])
tf_ct2 = tf.constant([1,2,3,4])

tf_ct1 / tf_ct2
```
```# Division with operator /
tf_ct1 = tf.constant([1,2,3,4])
tf_ct2 = tf.constant([1,2,3,4])

tf_ct1 // tf_ct2
```

### Divide TF Constant Tensor with Scaler

```tf_ct1 = tf.constant([1,2,3,4])
a = 10
tf.divide(tf_ct1, a)
```
```# division with operator /
tf_ct1 = tf.constant([1,2,3,4])
a = 10
tf_ct1 / a
```

### Divide 2 TF Variable

```tf_vr1 = tf.Variable([1,2,3,4])
tf_vr2 = tf.Variable([1,2,3,4])

tf.divide(tf_vr1, tf_vr2)
```

### Divide TF Variable with Scaler

```tf_vr1 = tf.Variable([1,2,3,4])
a = 10
tf.divide(tf_vr1, a)
```

### Divide 2 Numpy array with different Shape

```x = np.ones(6).reshape(1, 2, 1, 3) # (2,2,3,3)
print("x: ", x)
y = np.ones(6).reshape(2, 1, 3, 1)
print("y: ", y)

tf.divide(x, y)
```
Top