Pandas-handling-missing-values

Pandas Append() | Mastering in Python Pandas Library

Pandas Append() Function in Python

import pandas as pd
df1 = pd.DataFrame({'A': [1,2,3],
                   'B': [10,20,30]})


df2 = pd.DataFrame({'A': [4,5,6],
                   'B': [40,50,60]})

display(df1 ,df2)
Output >>>
              A    B
          0   1   10
          1   2   20
          2   3   30
    
    
              A    B
          0   4   40
          1   5   50
          2   6   60

df1.append(df2)
Output >>>
              A    B
          0   1   10
          1   2   20
          2   3   30
          0   4   40
          1   5   50
          2   6   60
df1.append(df2, ignore_index = True)
Output >>>
              A    B
          0   1   10
          1   2   20
          2   3   30
          3   4   40
          4   5   50
          5   6   60
df2.append(df1, ignore_index = True)
Output >>>
              A    B
          0   4   40
          1   5   50
          2   6   60
          3   1   10
          4   2   20
          5   3   30
df1 = pd.DataFrame({'A': [1,2,3],
                   'B': [10,20,30]})


df2 = pd.DataFrame({'C': [4,5,6],
                   'B': [40,50,60]})

display(df1 ,df2)
Output >>>         
              A    B
          0   1   10
          1   2   20
          2   3   30
    
    
              C    B
          0   4   40
          1   5   50
          2   6   60
df1.append(df2, ignore_index = True)
Output >>>
          C:\Users\Shubham Matiyara\Anaconda3\lib\site- 
          packages\pandas\core\frame.py:6211: FutureWarning: Sorting because 
          non-concatenation axis is not aligned. A future version
          of pandas will change to not sort by default.

          To accept the future behavior, pass 'sort=False'.

          To retain the current behavior and silence the warning, pass 
          'sort=True'.

            sort=sort)

                A    B     C
          0   1.0   10   NaN
          1   2.0   20   NaN
          2   3.0   30   NaN
          3   NaN   40   4.0
          4   NaN   50   5.0
          5   NaN   60   6.0
df1.append(df2, ignore_index = True, sort = False)
Output >>>
                A    B     C
          0   1.0   10   NaN
          1   2.0   20   NaN
          2   3.0   30   NaN
          3   NaN   40   4.0
          4   NaN   50   5.0
          5   NaN   60   6.0

1 thought on “Pandas Append() | Mastering in Python Pandas Library”

  1. Assalamualikum sir app bahoot achay hai over app hamaray lia kabelay ihteram hai app se parna over app ka parana bahoot acha ha thank you and over bi data science ke barey mein parawo thanks again

Leave a Reply